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NATTONAT. ADV1SORY COMMITTEE FOR AERONAUTICS

TECHNICATL NOTE NO. 1436

STRESSES IN AND GENERAL INSTABILITY
OF MONOCOQUE CYLINDERS WITH CUTOUTS
VI - CALCULATION OF THE BUCKLING LOAD OF CYLINDERS
WITH SIDE CUTOUT SUBJECTED TO PURE BENDING

By N. J. Hoff, Bertram Klein, and Bruno A. Boley

SUMMARY

A strain-energy theory was developed for the calculation of the
buckling load in general instability of circular reinforced monocoque
cylinders having a silde cutout and subJected to pure bending. The
theory was appllied to two smeries of specimens, each contalning three .
cylinders, which were tested and reported in part IV in this program
at the Polytechnic Institute of Brooklyn Aeronsutlcal ILaboratories.
The average deviation between theoretical and experimental buckling
load was 27.1 percent for the first series and 34.4 percent for the
second.

INTRODUCTION

In the present report, the last report of a serles of six (see
references 1 to 5) dealing with monocoque cylinders with cutouts, the
calculation of the buckling load of a cylinder which has a.slde cutout
and falls in general instability when subjected to pure bending is
undertaken. General instability 1s defined as the simultaneous buckling
of the circumferential and longitudinal reinforcing elements of a mono-
cogue cylinder together with the sheet attached to them. As the cal-
culations given herein follow closely those presented in reference 3,
it ghould be consulted for the development of some of the fundemental
connections used in the present report.

The first step in the strain-energy calculation was the assumption
of & buckled shape. This wasg done after examination of the deflection
patterns observed in the tests described in reference 4. The stringer
bordering the cutout on the compression side always showed the greatest
deflections, and its distorted shape was very simllar to a full sine
wave. For the specimens having a symmetric cutout (reference 1) the
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wave length was only slightly greater than the length of the cutout, but
for the specimens with side cutout the length of the wave varied and was
observed to be definitely greater. For this reason, in the present report
the wave length L was considered & parameter, the value of which had to
be determined from the requirement that the buckling loed Pe a minimum.
This procedure differs from that adopted in the calculation of the general
ingtabllity of the cylinders with symmetric ocutout in which the wave
length wae agsumed to be a known conatant, namaly the length of the
cutout.

In the circumferential direction the deflected shape at buckling
is repremented by the first-seven terms of a Fourler expansion. The
clrcumferential coordinate is measured from the edge of the cutout, and
the length of the interval in which the Fourier series is defined is
considered as one of the parameters of the problem. The boundary con-
ditions at the end of the interval determine four of the seven coeffi-
cients of the series, and one of them is indeterminate as in all buckling
problems. The remaining two coefficients, as well as the wave-length
perameter, are calculated from the requirement that the buckling load be
a minimum.

The assumptions made regarding the buckling pattern in the cilrcum-
ferential direction are identical for the cylinders having a symmetric
cutout and for those having a side cutout. For cylinders having a side
cutout, however, additional considerations were necessary because the
deflections extended into the complete portions of the cylinder. It-
wag declded to assume that the expressions developed for the buckled
shape in the cutout portlion were also valid for the complete portioms
of the cylinder; this assumption,in effect, means that the restraint
due to the continulty of rings and sheet in the complete portions is
neglected. The Jjustlfication for thla assumption 1s the resuliing com-
varative simpliclty of the calculations, as well as the observation that
the deflections always were considerably smaller in the complete portions
than in the cutout portion.

The following strain-energy quantitles were comnsidered: radial
and tangential bending, as well asm torsion of thestringers,bending of
the rings in thelr plane; and shear in the sheet. The extensional
strain energy in the sheet was taken into account by adding an effective
width of sheet to the stringers and the rings. In the calculation of
the external work 1t was assumed that the applied moment caused a linear
distribution. of the strain in the cutout portion of the cylinder. The
forces corresponding to these strains were applied to the stringers at
the ends of the wave, and the sum of the products of these forces and
the dlsplacements of thelr points of application was taken as the
external work. i

The buckling load was calculated from the requiremeﬁt that ~the
strain energy corresponding to the transition from the unbuckled Into
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the buckled shape be equal to the work done by the applied loads. The
minimum value of the buckling load was found by assuming the circum-
ferential wave length to be equal to the length of some integral number
of stringer fields, and the axial wave length, some integral number of
ring flelds. The values of the two undetermined Fourier coefficients
were calculated to make the buckling load a minimum. This minimum value
of the buckling load then was determined and compared with other minimum
values obtalned on the basis of different choices of circumferential and
exial wave lengths. Between 6 and 10 combinations were investigated for
each of the six cylinders - three of which are shown in figure 1 - in
order to find the absolute minimum value of the buckling load.

The investigation was conducted at the Polytechnic Institute of
Brooklyn Aeronautical Laboratories under the sponsorship and with the
financial assistance of the National Advisory Committee for Aeronautics.
For his substantlial share in the numerical work the authors are indebted
to Mr, John G. Pulos. '

SYMBOLS

a,ao,al,ae,a3 Fourlier coefficients

A ) croas-sectional area of stringer plus 1ts effective width

of sheet

b,bl,bg,b3 Fourier coefficlents

c goeoms tric factor in torsional rigildity GC

a width of panel measured along cilrcumference

E Young's modulus

G shear modulus

Go shear modulus of sheet covering at zero compressive
load

Gefr effective shear modulus

i index indlcating position along circumference

I moment of lnertla

I, moment of inertla of ring cross section and its effective

width of sheet for bending iIn its own pleane



_ polynomial functions of a and b
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moment of inertia of astringer cross section end its
effective width of sheet for bending in rasdial
direction (about a tangential axis)

moment of inertia of stringer oross smection and its
effective width of sheet for bending in tangential
direction (sbout a radial exis)

index indicating position along axial direction

trigonometric functions of 9, n, &, and 'b. |

length of wave in axial direction

distance between adjacent rings

nurber of ring fields involved in failure

- applied bending moment; function of n, a, and b appearing

in strain energy of bending in rings

parameter defining wave length in circumferentiel
direction

meximum compressive force acting at buékling
force carried by the ith stringer at buckling
function of x appearing in shear strain energy
radius of cylinder

function of ¢, n, &, and b eppearing in shear strein
energy

nunmber of stringer fielde involved in failure
total number of stringers in cylinder

thickness of sheet covering

strain energy

bending strain energy stored in ﬂngé

ghear strain energy stored in sheet

radiel bending strain energy stored 1n ;ﬁﬁngem

tangen_tia.?l: b_endi;}g strain energy s_'l?_o_red. in sf,ringo‘rs'

T -
I!iII i

-'i

i
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Uy : torsion strain energy stored in stringers,

2w effective width of sheet

Wy radial dlsplacement of a point on a ring or a stringer

Wy tangential displacement of a point on a ring or a stringer

W work done by applied forces

x axlal coordinate

o angle subtended by cutout

Qo s U, coefficients used in calculation of shear strain in a
panel due to displacements of its corners

v4 shear strain

(o] ' shift of neutral axis from horizontal dlameter

€ normal streln In a gtringer

€max maximum compressive strain at 'buékling -

® angular coordlnate

THE DEFLECTED SHAFE

The shape of the bulge at buckling 1s determined malinly by the
radlal deflections. The followlng expression was chosen to represent the
radial deflections:

W, = agky sin? (7x /L)

sine(mc/L)(a.o + &1 COB NP + &, COB 2nQ + a3 COs 3nP

+ b, sin 09 + by sin 2n9 + 'b3 gin 3nq)) (1)
provided that
0<9 < (xn/n) : (1a)
and
(1p)

'1::
I
o
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when @ > (x/n)
The notation and. the sign conven‘bions are shown in flgure 2. .

The deformatlons of the rings were assumed to be inextensional.
The condltion of inextensionality is L

Wy = - dw, [do (2)

Equations (1) and (2) determine the tangential deflections as follows:
Wy = sine{mc/]'_.) [— 209 - <a.l/n> sin nyp - @2/‘2::1) sin 2np - (a3/3n) gin 3np
+ (b]/n) cos noP + (b2/2n) cos 2nP + (‘b3/3n> cos 3an] (3)

provided that _ ' A -

0< @< (n/n) _ (32)
Integration of the bra.cketed. expression 111 the right-hand member of
equation (1) yields an integration constart that was omittsd from the o i
bracketed expression in the right-hand member ofequation (3). The

physical meaning of this cons'bant ils a rigid.-'bod.y rotation of the ring. -
Moreover, ' -

Wy =0 ' (31)
when o > (x/n)

1f it ie required that there be & smooth traneltion between the : N
bulge and the nondlstorted part of the cylinder at ¢ = ( rt/n) , the fol- .
lowing conditions must be satisfied: L

The tangentlal displacement must—venish, that is,

when @ = (=t/n) o o ) —
The radial displacement must venish, that is,

w, =0 ' (4b)
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when @ = (xn/n)

There must be no abrupt change in the direction of the tangent,
that 1s,

w3 = 0 (he)
vhen ¢ = (x/n)

There must be no abrupt change in the curvature, that 1s,

3w, 307 = 0 (ha)
when @ = (x/n)

The four conditions (equations (4a) to (4d) estabdlish four relations
between the Fourler coefficlents and make it posslble to express any four
coefficients by means of the remaining three. If a, 245 and 'bl are

retained as the basic paremeters, the followlng four equatlons ere
obtalnsd:

(8/5)ay - (9/5)e,

N

(3/5)2y - (4/5)e,
(5)

o'
v
n

(16/5)p, + (18/5) ma i

o
]

3 = (9/5)by + (12/5) e, J

With the notation |
&y/20) ==

and ’ (6)

(bl/ ao)

and after substitution of equation (5) in equations (1) and (3),

)

V. = ajky sinz(n'x/L) (7
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ﬁhere :
k, = {l +acoenp+ (l.6a - 1.8) cos 2np + (0.6e - 0.8) cos 3n9

+ b sin np + (3.20 + 3.67) sin 2np + (1.8 + 2.4n) sin 3nq>] (7a)

and
Wy = agks 81n® (rx /L) (8)
where '
= (1/h)[-n¢ - a sinop - (1/2) (1. 6a - 1.8) sin 2ngp _
- (1/3)(0.6a - 0.8)sin 3np + b cos nP + (1/2)(3 2b + 3 6x) cos 2n¢
+ (1/3) (1.8 + 2.4x)cos 3nq>] (8a)
Equations (7) and (8) are valid, provided that
0< o< (nt/n) | (8b)

When ¢ 1s greater than (w/n), the deflections are assumed to vanish.
Typical examples of the d.eflection patterne in the plane of the ringxp
are shown in figures 3 and k4 o

CAICULATION OF STRATN ENERGY-

Strain Energy Stored in Rings

The strain energy stored in any one ring is

= (1/2) [(El)r/r3J f/n [wr + (égwr/acpz)}a ap (9)

If the value of w, 1s substituted from equation (T) and the strain
energy 1s summed up over all the rings, the following expression is
obtalned:

= (1/2) (ai/rj) Ji:ll(EI)r sin®* (/1) £ﬂ/n Egl{a?kl/aq@—]g ap  (10)

where m 1is the total number of rings. included in the wave length. The
integration yields a result in closed form. The same isg true of the
gummation if all the rings have the same bending rigidity+ In such a
cage the total strain energy U, stored in all the rings becomes

= (3/16) (a%/:s)(EI)r(m + 1)M (11) '

L
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when
m>1 : (11=)
end
U, = (1/2)(a§/r3)(EI)rM (12)
when
m=1 (12a)
where .
oM = Er + 10 053096(1 - on°) + 206. 01005(1 - bn )2 + 90.303387(1 - 9n2)2
- 18.095573(1 - w?)(1 - )
+ a.[- 9. oh7786£’(1 )2 - 1. 50796&5(1 - 2)2

30.159289(1 - )(1 - 12 4 18.095573 (x - ll-n2)<l - 2)}

+ b[h(l -m2) + 2. (1 - o) 4 113 69784(1 - u2)2 4 142.636690(1 - on2)?
2.4(1 - 02)(1 - une) - 3.68(1 - m2) (1 - 9n2)]

8 |—1.57o7963( 1 - n2)2 £ h.0212386(1 - lm2>2 + 0.565u867(1 - 9n2)2:!

+

4

+
+ 12 [1.5707963(2 - 192 +16.084054(1 - 12)P 4 5. 08938(1 - o2)]
+ ep[6b(1 - 22) (1 - 1) + 3.84(a - 12) (1 - on2)] (13)

Straln Energy Stored in Stringers

The strain energy stored 1.. the stringers because of bending
in the radlal direction is

_Z(l/e) (BD) gt i <82w /ax2 (k)

where the summation 1s extended over all the stringeras contalned in the
bulge. Substitutlon and integration yield

L
Ustr., =Z (1/2) (EI)strr o2 ki(anl/I?)e cos® (2mx /L) dx

©]
U

- (,3*/1,3) 2 ) 12 (BD) g1y, (15)
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Both kl and. (EI)strr vary from stringer to stringer, (EI)strr

because the effective width of sheet to be added to the stringer section
changes. For this reason the summation has to be evaluated numerically.

The straln energy stored in the stringers because of bending in the
tangential direction is :

Ustry =Z (1/2) (ET) strt‘/:‘(aawt/Bxg)? ax (16)

where the summetion 1s extended over all the stringers contained in the
bulge. Substitution and integration yleld

Ugtr, = («h/ﬁ) agzkg(m)strt (1n

Because both k3 and (EI) stry VI from stringer to stringer, the

sumation has to be evaluated numerically.

The strain energy stored in the stringer because of torsion is

U =>_(1/e)ac j: (1/2)2 [(aewr)/@xacp)]a ax (e

In this equation (1/r) (82wr>/(8x6cp) 1s the unit angle of twist of the

stringer, and the summation 1s extended over all the stringers contained
in the bulge. In the expression for the Saint-Venant torsional rigildity,

¢ = 0.1ka” (18e)

because the test specimens were provided with square section etringers of
edge length &a. Differentliation gives

(aer/(Bx&P) = acky(n/L) sin (2mx/L) (19)
where : S
ky = n[- a gin np - (3.2a2 - 3.6) sin émp - (1.8 - 2.4) sin 309
+ b cos np +-(6.Ub + 7.27) cos 2np + (5.4 + T.2x) cos 3mp] (19a)

i



NACA TN No. 1436 : o

Hence the strain energy of torsion is

v, = @e2e0)/@d] T w2 (209

where the summatlon includes all the stringers contained in the bulge.
Because the variation of the torsional rigldity with effective width ia
negligibly small, the factor GC was written before the summation sign.
The summation was carried out numerically.

Strain Energy of Shear Stored in Sheet

The shear straln energy in the panel is taken as the average
effective shear modulus Ge £ multiplied by the square of the average
ghear strain 7 1n the pansl. The value of 7 1s calculated from the
displacements of the four corners of the panel. The total strain energy
of shear stored in the sheet then is -

Ugn = (1/2)>_ 786 T td (21)

The effective shear modulus depends upon the geometrio and mechanical
properties of the panel and the average strain therein. Its value was
taken from the empirical curves established earlier at Polytechnic
Institute of Brooklyn Aesronautical Iaboratories and presented in
Pigure 24 of reference 6.

The average angle of shear 7Y was calculated from the equation

7 = (o) (Yey, 5 ~ Veraa,g T Ve ¥ T, )

(- “‘-‘/Lle’Gi,g T Veie1,3 T Vo1, 1 T B, .1+1> (22)

where the first subscript refers to the circumferential location of the
corner of the panel and the second to the axial location, as shown in
figure 5. The values of the factors o, and ap were calculated from
the equations

(1/10) (4/r) = (1/10) (2n/s)
-1/2

o (23)

at,
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Substitutions yleld

m g-1 _ :
Ugn = (1/2) (£3/11)G0 2 O > (Gerp/o)1Rs (24)
3 1=0

where & 1s the number of stringer fields involved in the bulge, Q 18
a functlog of x only, and R is a function of ¢ only. The sum-
mation 5__ Q glves a result in closed form as follows:

22_—. Qy ""'E_m— {Bine [(f;l) [(m + 1)] - gin® [,,;(J + 1) /(m+ l)] 2

3=0 3=0
@ (1/%) (m + 1){1 - cos [(20) /(m + )] (25)
provided that
m>1 ; (258)
When m = 1,
S a=e | (25)
The meaning of the symbol R 18
R = [ap(ly,1 - ¥1,142) - o (k3,1 + k3,1+1)]2 (26)

The values of kl,i: k1,141, k3,15 end k3 3,) are obtained from those of ki
and kg {equations (Ta) and (8a)), respectively, by replacing the angle @

by 2x1/8 or 2q(i+l)/S. As examples, ky j &nd K34 ere listeds
kl,i =1+ a cos (2mmi1/8) + (1.6 ~ 1.8) cos (4mi/8)
+(0.6a - 0.8) cos (6mi/s) + b ein (2mi/8) _ ~
+(3.2b + 3.6x) sin (4m1/S) + (1.8b + 2.4x) sin (6mmi/8) (27a)
nk3’i - - (2mi/s)- a sin (2mi/8) - (1/2)(1.6a - 1.8} sin (4rmi/8)
- {(1/3)(0.6a - 0.8) sin (6m1/8) + b cos (2mi/s)
+(1/2) (3.2b + 3.6m) cos (bt /3) + (1/3)(1.80 + 2.41) cos (6mi/S)
(27v)

the gunmation of the R quentities indicated in eguation (24) wes
ecarried out numerically.
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WORK DONE BY EXTERNAL. FORCES

Ag was mentioned in the INTRODUCTION, the straln was asgsumed to
be distributed linearly over the sections of the cutout portion of the
cylinder. The force in each stringer was calculated as the product of
the strain, the elastic modulus, and the cross-sectional area of stringer
plus effective width of sheet. These forces were assumed to be the
external forces applied to the stringera at the end of the axial wave
length. Because of the reduction in the effective wldth of sheet on
the compression side of the cylinder the neutral axls 1n bending is
shifted toward the tension side. This shift was calculated and taken
into aoccount when the forces acting upon the ends of the stringers were
determined.

The distance between the polnts of application of the forces
shortens when the stringers bend during the buckling process. This
shortening multiplied by the force is the work done by the force. The
total external work is the sum of 21l the work guantities calculated for
the individual stringers:

W= (1/2)ZI>1J0\L [<awr/ax g (awt/axf] ax (28)

where Py is the extermal force acting upon the ith stringer and the
summation is extended over all the stringers contained in the wave length.
Substitutions and integration yleld

Li

(1/2)&?)2191 (1:/L)2<ki + ki)fsinz (2mx/L) ax
(1/8)a (2 /1)P,, g (Pi/l’cl)(kl,f‘ . X5 f) (29)

where P,,. 1is the force acting in the most highly compressed stringer.
The summation was carried out numerically.

CATCULATION OF BUCKLING LOAD

The buckling condition is

Up + Ugtr, + Ugtry + Ug + Ugp = W (30)
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where the values of the guantitlies must be taken from equations (11) or
(12), (15), (17), (20), (24), and (29), respectively. Equation (30) was
solved for Pcr’ which 1s a multiplying factor in the expression for

W, and minimlized by means of the followlng procedure:

A value of n corresponding to & circumferential wave length
extending over an integral number of stringer fields was first assumed s
and an integral number was chosen for m + 1, the number of ring flelds
included in the axial wave length. On the basls of these tentative
velues, M, k,, k3, and k) were computed. Wext, P., was assumed.

Thls assumption permitted the calculation of the effective width of
sheet anl consequently of the moments of inertia of the stringers and
mede possible the determination of the values of Geff/Go from the graph.

The summatione were then carried out. Substitution of the results in
equation (30) resulted in a polynomial P, of the second degree in a

and b in the left-hand member and ancther polynomial Pp of the second
degree in the right-hand member, P, mmltiplied by Pere. Solution for Pgyp
gave the fraction

Pl(axb)

P, = RCR (31)

This expression for Pcr may be minimized with respect to a2 and b»
by setting

_P1_ dm/oe ¥py/ov (32)
o " 5y " Tpf " S0

The partial differential coeffilclents of P and p, are linear

functions of a and b. Equation (32) represents three connections
between P,p, &, and b. They were solved by a rapldly converging

P

trial-and-error method. Firet, a value was agsumed for Pops, ond a

and b were determined from the two linear equations. Then the values
of & and b were substituted into the gquadratic expression for Pope

The procedure was repeated with the aid of new agsumptions for Pcr until
the value obtained was close enough to the assumed value.

Wher. the value of P, obteined in these caloulations differed
subgtantially from the value assumed at the outset, the moments of inertia
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and the effective shear modulus had to be recalculated and the entire
procedure repeated. All the calculations were carried out for a number.
of different choices of n and m. The buckling loads corresponiing

to these different values were compared, and the smallest one was con-
sldered as the true buckling load. Details of the procedure may be seen
from the numerical examples in the appendix.

COMPARTSON OF THEORY AND EXPERIMENT

Numerical calculatlons were carried oul for the two arrangements
of stringers and three circumferential sizes of cutouts lnvestigated
in the experiments described in referenze L. Typlcal buckling patterms
obtained in the calculations are shown in figures 3 and b, and detalls
of the .numerical results are presented in table 1. Theoretical and
experimental bending moments at buckling are compared in figure 6.

The theory predicted bending moments at buckling which were, with
one exception, consistently highsr than those cbtained in the experi-
ments. Moreover, the deviations between theory and experiment increased
systematically wlth decreasing circumferential length of the cutout.
Straln-energy calculatliones are kmown to yield too high buckling loads
when the deflected shepe asgsumed differs from the actual shape of
distortions.

The circumferential wave length was predicted by theory with
satisfactory accuracy. In the axial direction the theoretical wave
length is greater than the ons observed. The devliation is glight in
the case of the l6-gtringer snecimens and large in the case of the
8-stringer specimens. Small changes in the axial wave length, how-
ever, have little effect upon the buckling load.

CONCTUSIONS

A strain-energy theory has been developed for the calculation of
the buckling load in general instability of circular reinforced mono-
coque cylinders which have a side cutout and are subJected to pure
bendling. When the thsory was applied to the test cylinders of part IV
of the present series of investigations, the followling percentage
deviations from the experimental values were obtained: 54.8, 32.k4,
and. 16.1 percent for the 45°, 90°, and 135° cutouts, respectively, of
the 8-stringer series; and 47 4, 30.8, and —3.2 percent for the 45° s

90 and 135 cutouts, respectively, of the 16-stringer seriles,
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The authors belleve 1t would be desirable to conbtinue the theoretical
investigations on the basis of more refined assumptions for the deflected
shape at buckling. Straln-energy calculations are known to yield too
high buckling loads when the deflected shape assumed differs from the
actual shape of dlstortions. More experimental work is also needed for
a better understanding of the general instability phencmenon of reinforcdd
monocoque cylinders having a side cutout:-

Polytechnic Imstitute of Brooklyn
Brooklyn, N. Y., December 26, 1946 -
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APPENDIX

NUMERTCAI. EXAMPLE

Detaills of the numerical work performed In comnection with the
determination of the buckling load for a tesgt specimen are shown. The
cylinder considered 1s cylinder 39 of reference L. Pertinent data to be
referred to are listed as follows:

Radius, r, In. . ¢ ¢« « o ¢ ¢ ¢ ¢« ¢ o ¢ + ¢ ¢ o ¢ 4 o s o« s+ « &+ « « 10
Distance between adjecent rings, Iy, in. . . . - + . . . . . . . . 6.429
Width of panel measured along circumference, d, in.. . . . . . . . 7.85k
Angle subtended by cutout, a, 888 .+ « + « + o ¢ s o ¢ 0 o e . . . b5
Total number of stringers incylinder, S . + « « + « « ¢« ¢ + o .+ . . 8
Stringer cross section, in.. . . « ¢« « + ¢ ¢ 0 o 4 e e s . . 3/8 x3/8
Ring cross section, IN.. « o« o « o o o 27¢ « o 2 o « o « « + « 3/8%x3/8
Young's modulus, E, pel . . . & « + ¢ ¢« ¢ o 4o 4+ 4 . . . . 10.5% lO6
Shear modulus, G, PS1 . ¢ ¢ ¢ ¢ ¢ ¢ 4 ¢ ¢ o o o o o« o s o+« 3.9X% lO6
Shear modulus of sheet covering at zero compressive 6
® load, Gg, P8l . . . . o . .o e 4 e e e e e e e e e e e e . 2 3.9%x10

Thickness of sheet covering, t, In.. « « « « « « + + + « + o . . . 0.012

Moment of inertia of ring cross section and 1ts effective
dth of sheset for bending its, own plane, I, 6
(1/2) (3/8) [(1/8) + (0.012)B), 1n*. . . . .. . .. .. 80.35 x10-

Once a value of s, the number of stringer fields involved in
failure, is chosen, it is possible to reduce the expressions denoted by

M, k), k3, and kh defined by equations (13), (7a), (8a), and (192),

respectively, to arithmetic polynomials in a and b. The one for M
is obtained by simply inserting the values of n = (S/Es) and its powers
into equation (13). For s = 3, the result is:

M X 1072 = 0.002087782 + 0.0131007b° + 0.19654065
+ 0.00286815ab + 0.0084369a + 0.1010576b (33)

For the evaluation of kl, k3, and. kh it 1s convenlent to set up a

tabular arrangement. For 8 = 3 this arrangement takes the following -
form: .



1 {Constani | vos {xi/f3)|cos (Exi/3) cos {3x1/3)] 2ni/8 .[ sin (x1/3) | sin (2x1/3) |sin (3x1/3)
0 1 1 1 1 0 0 0 0
1 1 5 -.5 -1 . 785398 .8660255 B660255 | O
2 1 -5 -.5 1 1.570796 8660255 | -.8660255 | O
Multi- a 1.6a- 0.6a- b 3.2b+ 1.8+
pliers 1 1.8 0.8 11.3097336 7.5398224
for kl
Mudti- 0.75b 1.2b+ 0.45b+ -0.T5a -0.6a+ -0.158a+
pliers 4.2411501 1.68849556 | -1 0.675 0.2
for k3
Multi- 1.333...0| 8.5333...b+| T7.2b+ -1.333...a| -k.2666...a+| -2.h%a+
pliers 30.1592804 30.1592804 4.8 3.2
for kh

For the valus of the index 1 = 0 denoting the positlon of the stringer at the edge of the cutout,
the polynomial for ky iIn a and b 1s found by multiplylng the expressions appearing in the firet

row below the double line (labelsd miltipliers for kl) by the numbers in the corresponding colwm

ligted in the First row (labeled 0) and adding like quantities of the results of the products. In a
gimilar manner the polynomialg for 1 =1 and 1 =2 for lr__L are obtailned, as well as the three

values each for k3 and kh' The resuits are presented in tabular form as follows:

gt
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TABLE 2
i ky kg k),
ol 3.2a-1.6 2.4b + 6.1261056 17.0666...b +60.3185787

1| - 0.9a + 3.673071b + 12.4945177

- 1.169134%a - 0.675b - 4.2063614

- 4.849728a - 10.8b - 41.0820117

2| - 0.7a - 1.9052561b - 8.6945177

- 0.1299038a - 0.525b - 2.3909827

2.5403415a + 2.2666..b + 10.9227221

The functions (1«:1,1 - kl,1+l) and _(k3’-i+1 + k3,i) can be determined with the ald of table 2 by

simply subtracting or adding the polynomials of adjacent rows in the first two columms of the table.
It mist be remembered that k; = 0 and k3 = 0 when 1 =3 slnce the deflections have been assumed to

venish at the third stringer, where 1 = 3. If «. 1is taken as 0.0785 and a

R = (kl,i - kl,1+l)°'r - (k3,1+l + k3,1)a.t becomes for each field:

TABLE 3

¢ 88 -0.5, the function

1th field R
1 -0.2625532a + 0.576826b - 0.147112
2 -0,6652272a - 0.164686b - 1.6344854
3 -0.1199299a - 0.4121398p - 1.878358

9EHT °ON NI VOVN

6T




Before the stringer tending strain enmergy, shear atraln emergy, and external work can be
evaluated, 1t 1s neceasary to aseume firet a wvalue of the buckling load mo that the numerieal
values of the stringer moments of inertla, effective shear modulus, and effective area may be
determined. Since the last three quantities are functions of the norma) strain acting in the
axial fibers at buckling, a value of the critical strain 1s assumed. Also in order to locate
the poglition of the neutral axia at fallure, the critical strain must be known. In the present

example, the critical strain is gueassed to be 21 X 10'1". ‘Then the shift of the neutral axls,
calculated by taking first moments of area, is round to be 0.07, expressed in percents.gﬁ of

the radius. e followlng table contains the afore-mentioned 1tems for — 21 X 10
and 8/r = 0.07

TABIE 4
(1) (2) (3) (%) (5) (6) (7) (8) (9)

6

L € v Tetr, Im:rt 3.3 Geff/ o | 2ogs Aeff( ¢/ Emax)
0 | 8.884x 107" 4.290 | 22.15 X 1074 %35 x 10-4{2,60 x 10| 0.633 | C.1664 0.070k
1 | 19.506 2.648 | 23.65 200 5.91 49 1724 16014
2 | 19.506 2.648 | 23.5 200 5.91 19 1724 .1601h

Colwm (1) refers to the stringer station. Colum (2), the strain at these locatioms, is
directly proportional to the distance from the neutral axis, since a linear strain distribution

is agsumed.
of reference 7.

Column (3) is the effective width of curved sheet calculated from eguation (30)
Columne (L4) and (5) give the moments of imertia of the stringers plus their

effsctive width of curved sheet. Thess are calculated from equations (34) azd (36) of
reference 7, with special conslderations for the edge stringer because it has effective width

oe
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on only one side. Column (6) indicates the ratio of the actual strain
in the sheet when the monocogue cylinder buckles to the buckling strain

of a panel of sheet of 3.30 X 10')+ as glven in reference 6. These values
are needed to obtaln the percentage reduction in the wvalue of the shear
modulus recorded in figure 24 of reference 6 and presented in columm (7).
Adding to the cross—sectlonsl area of the stringer, 0.140625 squere inch,
the area of the effectlve width of sheet which is 0.012 times a value of
column (3) yields a value of effective area shown in colum (8). The
entries in column (9) can be computed with the aid of columns (8) and

(3).

The next step in the calculations is to assume a value of m + 1
the number of ring fields iInvolved In failure. It is then possible to
write the equation for the buckling condition 1n terms of the paramsters
a and b. It 1s convenient to multiply the numerator and denominator

terms of equation (31) by [ﬁm +l)/%] X th and. to solve for Gmax x 10%
Instead of ¢ ;s thls procedure requlres that each strain energy be
miltiplied by [(m+1) /‘E] x 10% and that the external work be multiplied

by (mD@]Xm%'%mm+l=n,fmmwmﬁmsun,uﬂ,ﬂﬂ,
(20),” (24), and (29), there results: '

U, [(m +1) /E] x 10% = a2 |:(3/16)(11)2(80.3§ X 10'6) /103]m x 10*

.

= ai 1822.9% (M.x 10-5) (34)

where M X 1072 1is glven in equation (33).

o2 [nl‘/(6.429)3(11)2] [Zi ki—IEtrr""Zi kglstrtl x 10%

Ugtarfm +1) A x 10%

a2 ; [(30.298 Istrr)k?_ + (30.298 Istrt)"g] (35)

where the 1ndicated summation can be evaluated by taking the sum of the
products of the squares of the polynomials for both k; and K3 appearing

in table 2 and 30.298 times the entries for corresponding values of 1
listed in columns (4) and (5) of table 4. TFor this purpose it is help-
ful first to calculate and record the quadratic polynomials in & and D



vhich represent the squares of kl and lr.3 for each value of 1. Thepe expressions are not ghown

here.
U, [(m + 1) /E] X 10" = & E?/»(m)e(s.hem] (3.9/10.5) (0-002769)( 2 ki) x 10"

{

- aﬁ(o.osw)( > kﬁ) | (36)

i

vhere the summatlon is' performed by squaring a.nd adding the values of kh_ glven in table 2 for each

value of 1. |

Ugn [(m + 1) /] x 10* = a5 [(0.012) (7.854) /(8) (6.k29)] (3.9/10.5) [(11)2(1 - o8 Eﬁ’{)] X

[; (Geff/ho)ﬁ] x 10" = . ; E30'57(G;ff/ao>:lnf (37)

vhere the summation can be deduced by squaring each polyncmial of table 3, mltiplying the resuit, by
130.57 times the proper value of (G ff/Go to be found in column (7) of table 4, and adding all such

products. A table contalning the terms in R2 1a needed. It is not glven here. And finally,
W [(m 1 fe] x 10* = & [1@/(1;) (6.h29):| oy X 20* [Zi Aeff(t/tm)(k?_ + kg)]

= aﬁ Gz X 10 {'Z E0-38379)Aeﬁ(¢/‘m)](k§ + kg) (38)

1
vhere the summtion is carried ocut by finding for each walus of 1 the sum of the squares of k; ard

These quanitities are evaluated in comnection with the determination of the atringer bending strain

mltiplying this eum by 0.38379 times the corresponding value appsaring in columm (9) of
ta.ble f& and adding all asuch products.

9EHT *ON NI VOVN




23

NACA TN No. 1436

» L1esgoosu JT pogsedea sseooxd

oy) pus uojjempxoadds puodes B 88 POEN oq fem enT®A BTUL .Hdsw Jo enyma ® 8PTOIL (6€) uorgEnbe
09Ul S3Ineex 6yj JO uorin3lequs ‘peaTos exw suoljenbe eseyq J63Jy °q PuB B UL guojyenbe

mﬂooﬂﬁ?ﬁamhonﬂmmdopdooﬁdoho.H.m (Th) pue (o%) suoryenbe ‘peumsse ST Hmﬁw Jo entea B JT

‘q pus ‘® ..H.msw guUMOWUN eeay) eyl Ul suoijenbe eeay; queseadex (Ti) PuB ‘(o) ‘(6€) suoryenby

. £THo26°Q + 4(9089E2°T)T + BLOOEET O~
ﬁi COCTS 6Tk + 0(6359°Cg)a + wTekez T MO R

: 2£1992°0 — 4L90LET*0 — B(TSQTHH"0)3 _
(on) TG 0T + dTatta T + 8(9eHe 9E)2 NUS S

are quemeafnbex 8y} BuTLISTIEE JOJ SUOTRTPUOD OMY OUj °q TPUuB B TJ0q 0%

qo0dser GITA POZTUTUTE o 48mm 'y ‘ST 38Uy ‘perrsep Y ¥HL, jo enyes wmmpum @ ‘BUFTiONg I0f

q€THOZ6°Q + BIETGYS'0 — qELIOEET 0~) + 69629L°9T + z49089¢e°T + BISITHN"O
4GOGTe  6TH + BiHTS 0gT + UBTSEE T + £nGQ 988 + ga€3t9 ag + 289 9¢

(6€) = 40T X e,

. 18T UTBI3E TBOT}[IO Oyj} JOJ 3nsex oy
-posodmoo ST 9T UOTUM JO SmIe) LBIoue-upvils TENPFATPUT OU3 SUTITIA JMOYITM £reyeypemmuy pejndmoo oq

uso Teube BT :oa X Tett, yotys 03 q pue ® uf syemmoulyod opjmaApend omg ey Jo OTBL €U JO J09%8

-Joumu ey) ‘pomMoTrol ST eanpeooxd Bupodeaoy eyl FI .:OH x YU, £q PEPTATP (g€) uotyenbe Lq ums STUL

Burpparp pus (LE) pue € (9€) ¢ (GE) ‘(#E) suorrenbe Burpps £q Peurmyqo EF 0T X T8 0 entea eyy



ol . NACA TN Fo. 1436

In the present numerical example €pax X 10+ has been assumed to

be 21 for the calculetion of the position of the neutral axis, effective
widths of'-sheet, moments of.inertia, and effective areas. The same value
is substituted into equations (40) and (41). The values of a sand b are
found to be ' -

a = -3.4349
(42)
b = -1.74254
When these results are inserted into equetion (39), € X lO)'L becomes

max
22.4k, Experience has shown that the difference between the valus

- -4 = -4
€rax = 22.44 X 10™" obtalned and the value €pax = 21 X 10 agsumed

is small encugh to make a repetition of the calculations unnecessaxry .
The cheanges in the values of the effective widths, moments of inertia,
location of neutral axis, and effective—shear modulus resulting from

the increase in €., from 21 X 10™% to 22.4k X 10°* would have a
negligible effect upon the calculated buckling strain. Hence

22 .44 x lO')'" may be téken as the critical buckling strain.

The critical moment is computed from the relastion : _

Mep = ZP&

where P 1s the force in a stringer at buckling, & is the distance
of the stringer from the neutrsl axis, and the summation must be taken
over the entire cylinder. ZExperessed in terms of gtrain, this relatlion .

is
Mop =Z(EAeffe>d. = [EGM/(r + 8)]Z Aeffd'g (43)
since . ' .. _
€ = lmaxd_/(r + B)

For a critical strain of 22.L4 X 107%, M.y becomes 174,960 inch—pounds.
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TABLE 1

TABUTATION OF RESULTS

5 o | Mtheor Moxp Percent 8/r mex 8[(m+1)] -a b
(deg)| (in.-1b)| (in.-1b) | Difference
8 45 | 174,960 | 113,000 54.8 0.07] 22.4k x 21077 | 3 7 | 3.43491 1.7425
90 | 142,80 | 107,900 32.4 07| 18.67 L 10 | 2.7724| 2.746k
135 116, ,070 | 100,000 16.1 05] 16,4k L 10 | 2.8213] 2.8887
16 L5 | 342,680 | 232,500 7.4 0.05[ 24.83 6 7 | 2.3523{ 3.1193
90 | 225,690 | 172,600 30.8 O} 16.76 6 7 | 2.34k9] 3.1744
135 | 164,470 160,900 -3.2 04| 1%.13 6 7 | 2.3¥71] 3.2175
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Figure 1.- Typical monocoque cylinders.
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Figure 3.~ Deflected shape.
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REFER TO FIELDS

828

9E%T ON NI VOVN




S= 4
n= 1

~ a=-277138
b= —2.7464

“HACA

Flgure 3.~ Deflected shape of ring in it8 own plare (according to
theory, exaggerated). Cylinder 37; 8 stringers; 809 cutout,

= |4
|3

-2.3523
= -3.193

S
n
a =
b

“NAGA

Figure 4.- Detfiected shape of ring in its own plane (according to
theory, exaggerated), Cylinder 38; 18 atringers; 45° cutout,
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Figure 6.~ Deformations of panel corners with notation for shear strain calculations.
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Figure 6.- Comparison of calculated and experimental critical moments.
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